LPS-induced epithelial barrier disruption via hyperactivation of CACC and ENaC

Author:

Kim Minkyoung1,Lee Sang-Woo1,Kim Junchul1,Shin Yonghwan1,Chang Fengjiao1,Kim Jin Man1,Cong Xin2,Yu Guang-Yan3,Park Kyungpyo1

Affiliation:

1. Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, South Korea

2. Department of Physiology and Pathophysiology, Peking University School and Hospital of Stomatology, Beijing, China

3. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China

Abstract

Gram-negative bacterial lipopolysaccharide (LPS) increases the susceptibility of cells to pathogenic diseases, including inflammatory diseases and septic syndrome. In our experiments, we examined whether LPS induces epithelial barrier disruption in secretory epithelia and further investigated its underlying mechanism. The activities of Ca2+-activated Cl channels (CACC) and epithelial Na+ channels (ENaC) were monitored with a short-circuit current using an Ussing chamber. Epithelial membrane integrity was estimated via transepithelial electrical resistance and paracellular permeability assays. We found that the apical application of LPS evoked short-circuit current ( Isc) through the activation of CACC and ENaC. Although LPS disrupted epithelial barrier integrity, this was restored with the inhibition of CACC and ENaC, indicating the role of CACC and ENaC in the regulation of paracellular pathways. We confirmed that LPS, CACC, or ENaC activation evoked apical membrane depolarization. The exposure to a high-K+ buffer increased paracellular permeability. LPS induced the rapid redistribution of zonula occludens-1 (ZO-1) and reduced the expression levels of ZO-1 in tight junctions through apical membrane depolarization and tyrosine phosphorylation. However, the LPS-induced epithelial barrier disruption and degradation of ZO-1 were largely recovered by blocking CACC and ENaC. Furthermore, although LPS-impaired epithelial barrier became vulnerable to secondary bacterial infections, this vulnerability was prevented by inhibiting CACC and ENaC. We concluded that LPS induces the disruption of epithelial barrier integrity through the activation of CACC and ENaC, resulting in apical membrane depolarization and the subsequent tyrosine phosphorylation of ZO-1.

Funder

National Research Foundation of Korea

Seoul National University

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Epithelial Sodium Channel—An Underestimated Drug Target;International Journal of Molecular Sciences;2023-04-24

2. Breaking the Gingival Barrier in Periodontitis;International Journal of Molecular Sciences;2023-02-25

3. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier;Therapeutic Advances in Gastroenterology;2023-01

4. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut;Nutrients;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3