Functional NMDA receptors in rat erythrocytes

Author:

Makhro Asya1,Wang Jue2,Vogel Johannes1,Boldyrev Alexander A.3,Gassmann Max1,Kaestner Lars2,Bogdanova Anna1

Affiliation:

1. Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland;

2. Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany; and

3. International Biotechnology Centre, Department of Biochemistry, Moscow State University, Moscow, Russia

Abstract

N-methyl-d-aspartate (NMDA) receptors are ligand-gated nonselective cation channels mediating fast neuronal transmission and long-term potentiation in the central nervous system. These channels have a 10-fold higher permeability for Ca2+compared with Na+or K+and binding of the agonists (glutamate, homocysteine, homocysteic acid, NMDA) triggers Ca2+uptake. The present study demonstrates the presence of NMDA receptors in rat erythrocytes. The receptors are most abundant in both erythroid precursor cells and immature red blood cells, reticulocytes. Treatment of erythrocytes with NMDA receptor agonists leads to a rapid increase in intracellular Ca2+resulting in a transient shrinkage via Gardos channel activation. Additionally, the exposure of erythrocytes to NMDA receptor agonists causes activation of the nitric oxide (NO) synthase facilitating either NO production in l-arginine-containing medium or superoxide anion (O2·−) generation in the absence of l-arginine. Conversely, treatment with an NMDA receptor antagonist MK-80, or the removal of Ca2+from the incubation medium causes suppression of Ca2+accumulation and prevents attendant changes in cell volume and NO/O2·−production. These results suggest that the NMDA receptor activity in circulating erythrocytes is regulated by the plasma concentrations of homocysteine and homocysteic acid. Moreover, receptor hyperactivation may contribute to an increased incidence of thrombosis during hyperhomocysteinemia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3