A Research on the Role and Mechanism of N-Methyl-D-Aspartate Receptors in the Effects of Silver Nanoparticles on the Electrical Excitability of Hippocampal Neuronal Networks

Author:

Hou Kun1,Meng Chen1,Huang Yan1,Zhang Zequn1,Wang Zhigong2,Lü Xiaoying1

Affiliation:

1. State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, PR China

2. Institute of RF- & OE-ICs, Southeast University, Nanjing, 210096, PR China

Abstract

The purpose of this paper is to explore the role and mechanism of N-Methyl-D-Aspartate (NMDA) receptors in the effects of silver nanoparticles (SNPs) on the electrical excitability of hippocampal neuronal networks. First, the cytotoxicity of different concentrations of SNPs was evaluated and screened by MTT experiment, then the Voltage Threshold Measurement Method (VTMM) was employed to study the effects of SNPs on the electrical excitability of hippocampal neuronal networks under non-cytotoxic (5 μM) and cytotoxic (100 μM) concentrations after different action times. The role of NMDA receptors in the effects of SNPs on the electrical excitability of hippocampal neuronal networks was investigated through the NMDA receptor antagonist MK-801. Then, the effects of SNPs on the number of NMDA receptors and the Ca2+ content in hippocampal neurons were further investigated, and the relationship between these changes and neuronal networks electrical excitability was discussed. The results of voltage threshold (VTh) test showed that non-cytotoxic 5 μM SNPs has an excitatory effect on hippocampal neuronal networks, while the effect of cytotoxic 100 μM SNPs gradually changed from excitatory to inhibitory with the extension of action time. It was found that SNPs could increase the electrical excitability of neuronal networks by activating NMDA receptors through the experiments with MK-801 antagonists. Moreover, the fluorescent staining experiments showed that the activation of NMDA receptors by SNPs can lead to an increase in the intracellular Ca2+ content, and then trigger a negative feedback regulation mechanism of neurons between the number of NMDA receptors and intracellular Ca2+ content. The high Ca2+ content in neurons can also decrease neurons’ cell viability, which in turn leads to changes in the electrical excitability of the neuronal networks.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3