Author:
Huang Jingbo,Hove-Madsen Leif,Tibbits Glen F.
Abstract
While it has been reported that a sparse sarcoplasmic reticulum (SR) and a low SR Ca2+pump density exist at birth, we and others have recently shown that significant amounts of Ca2+are stored in the neonatal rabbit heart SR. Here we try to determine developmental changes in SR Ca2+loading mechanisms and Ca2+pump efficacy in rabbit ventricular myocytes. SR Ca2+loading (loadSR) and k0.5(Ca2+concentration at half-maximal SR Ca2+uptake) were higher and lower, respectively, in younger age groups. Inhibition of the L-type calcium current ( ICa) with 15 μM nifedipine dramatically reduced loadSRin older but not in younger age groups. In contrast, subsequent inhibition of the Na+/Ca2+exchanger (NCX) with 10 μM KB-R7943 strongly reduced loadSRin the younger but not the older age groups. Accordingly, the time integral of the inward NCX current (tail INCX) elicited on repolarization was highly sensitive to nifedipine in the older groups and sensitive to KB-R7943 in the younger groups. Interestingly, slow SR loading took place in the presence of both nifedipine and KB-R7943 in all age groups, although it was less prominent in the older groups. We conclude that the SR loading capacity at the earliest postnatal stages is at least as large as that of adult myocytes. However, reverse-mode NCX plays a prominent role in SR Ca2+loading at early postnatal stages while ICais the main source of SR Ca2+loading at late postnatal and adult stages.
Publisher
American Physiological Society
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献