Epitranscriptomics in fibroblasts and fibrosis

Author:

Ilieva Mirolyuba1ORCID,Uchida Shizuka1ORCID

Affiliation:

1. Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark

Abstract

Fibroblasts play an important role in the pathogenic mechanisms of several socially significant diseases, including pulmonary and cardiovascular fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease. The alterations of the epitranscriptome, including more than 170 distinct posttranscriptional RNA modifications or editing events, justified their investigation as an important modulator of fibrosis. Recent development of high-throughput methods allows the identification of RNA modification sites and their mechanistic aspect in the fibrosis development. The most common RNA modification is methylation of N6-adenosine deposited by the m6A methyltransferase complex (METTL3/14/16, WTAP, KIAA1429, and RBM15/15B), erased by demethylases (FTO and ALKBH5), and recognized by binding proteins (e.g., YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, etc.). Adenosine to inosine (A-to-I) RNA editing is another abundant editing event converting adenosine to inosine in double-stranded RNA regions through the action of the adenosine deaminase (ADAR) proteins. Last but not least, 5-methylcytosine (m5C) regulates the stability and translation of mRNAs. All those RNA modifications have been observed in mRNA as well as the noncoding regions of pre-mRNA and noncoding RNAs (ncRNAs) and demonstrated to be involved in fibrosis in different cellular and animal models. This Mini-Review focuses on the latest research on epitranscriptomic marks related to fibroblast biology and fibrosis as well as elucidates the future research directions in this context.

Funder

Novo Nordisk Fonden

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3