Affiliation:
1. Department of Public Health, Section of Sport Science, Aarhus University, Aarhus, Denmark
2. Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
Abstract
The extracellular K+ concentration ([K+]o) increases during physical exercise. We here studied whether moderately elevated [K+]o may increase force and power output during contractions at in vivo-like subtetanic frequencies and whether such potentiation was associated with increased cytosolic free Ca2+ concentration ([Ca2+]i) during contractions. Isolated whole soleus and extensor digitorum longus (EDL) rat muscles were incubated at different levels of [K+]o, and isometric and dynamic contractility were tested at various stimulation frequencies. Furthermore, [Ca2+]i at rest and during contraction was measured along with isometric force in single mouse flexor digitorum brevis (FDB) fibers exposed to elevated [K+]o. Elevating [K+]o from 4 mM up to 8 mM (soleus) and 11 mM (EDL) increased isometric force at subtetanic frequencies, 2–15 Hz in soleus and up to 50 Hz in EDL, while inhibition was seen at tetanic frequency in both muscle types. Elevating [K+]o also increased peak power of dynamic subtetanic contractions, with potentiation being more pronounced in EDL than in soleus muscles. The force-potentiating effect of elevated [K+]o was transient in FDB single fibers, reaching peak after ~4 and 2.5 min in 9 and 11 mM [K+]o, respectively. At the time of peak potentiation, force and [Ca2+]i during 15-Hz contractions were significantly increased, whereas force was slightly decreased and [Ca2+]i unchanged during 50-Hz contractions. Moderate elevation of [K+]o can transiently potentiate force and power during contractions at subtetanic frequencies, which can be explained by a higher [Ca2+]i during contractions.
Funder
Det Frie Forskningsråd
Augustinus Fonden
A.P. Møller Foundation
Carl and Ellen Hertz's Grant
Torben and Alice Frimodts Foundation
Christian and Ottilia Brorsons travel Grant
Swedish Research Council
Swedish Research Council for Sport Science
Publisher
American Physiological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献