Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat

Author:

Broch-Lips Martin1,de Paoli Frank1,Pedersen Thomas Holm1,Overgaard Kristian2,Nielsen Ole Bækgaard1

Affiliation:

1. Departments of 1Physiology and Biophysics, and

2. Sport Science, Aarhus University, Aarhus, Denmark

Abstract

During intense exercise, efflux of K+ from working muscles increases extracellular K+ ([K+]o) to levels that can compromise muscle excitability and hence cause fatigue. In this context, the reduction in the exercise-induced elevation of [K+]o observed after training in humans is suggested to contribute to the increased performance after training. Although a similar effect could be obtained by an increase in the tolerance of muscle to elevated [K+]o, this possibility has not been investigated. To examine this, isolated soleus muscles from sedentary (sedentary) rats and from rats that had voluntarily covered 13.1 ± 0.7 km/day in an unloaded running wheel for 8 wk (active) were compared. In muscles from active rats, the loss of force induced by exposure to an elevated [K+]o of 9 mM was 42% lower than in muscles from sedentary rats ( P < 0.001). This apparent increase in K+ tolerance in active rats was associated with an increased excitability as evident from a 33% reduction in the electrical current needed to excite individual muscle fibers ( P < 0.0009). Moreover, muscles from active rats had lower Cl conductance, higher maximal rate of rise of single-fiber action potentials (AP), and higher Na+/K+ pump content. When stimulated intermittently at 6.5 mM K+, muscles from active rats displayed better endurance than muscles from sedentary rats, whereas no difference was found when the muscles were stimulated continuously at 30 or 120 Hz. We conclude that voluntary running increases muscle excitability, leading to improved tolerance to elevated [K+]o.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3