Affiliation:
1. Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
Abstract
The present study examined muscle adaptations and alterations in work capacity in endurance-trained runners as a result of a reduced amount of training combined with speed endurance training. For a 6- to 9-wk period, 17 runners were assigned to either a speed endurance group with a 25% reduction in the amount of training but including speed endurance training consisting of six to twelve 30-s sprint runs 3–4 times/wk (SET group n = 12) or a control group ( n = 5), which continued the endurance training (∼55 km/wk). For the SET group, the expression of the muscle Na+-K+pump α2-subunit was 68% higher ( P < 0.05) and the plasma K+level was reduced ( P < 0.05) during repeated intense running after 9 wk. Performance in a 30-s sprint test and the first of the supramaximal exhaustive runs was improved ( P < 0.05) by 7% and 36%, respectively, after the speed endurance training period. In the SET group, maximal O2uptake was unaltered, but the 3-km (3,000-m) time was reduced ( P < 0.05) from 10.4 ± 0.1 to 10.1 ± 0.1 min and the 10-km (10,000-m) time was improved from 37.3 ± 0.4 to 36.3 ± 0.4 min (means ± SE). Muscle protein expression and performance remained unaltered in the control group. The present data suggest that both short- and long-term exercise performances can be improved with a reduction in training volume if speed endurance training is performed and that the Na+-K+pump plays a role in the control of K+homeostasis and in the development of fatigue during repeated high-intensity exercise.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献