Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity

Author:

Desforges Bénédicte1,Savarin Philippe1,Bounedjah Ouissame1,Delga Stéphanie1,Hamon Loïc1,Curmi Patrick A.1,Pastré David1

Affiliation:

1. Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale U829 and Université Evry-Val d'Essonne, Evry, France

Abstract

Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol, and taurine. However, the massive uptake of compatible osmolytes is a slow process compared with other defense mechanisms related to oxidative or heat stress. This is especially critical for cycling cells as they have to double their volume while keeping a hospitable intracellular environment for the molecular machineries. Here we propose that clustered cells can accelerate the supply of compatible osmolytes to cycling cells via the transit, mediated by gap junctions, of compatible osmolytes from arrested to cycling cells. Both experimental results in epithelial normal rat kidney cells and theoretical estimations show that gap junctions indeed play a key role in cell adaptation to chronic hypertonicity. These results can provide basis for a better understanding of the functions of gap junctions in osmoregulation not only for the kidney but also for many other epithelia. In addition to this, we suggest that cancer cells that do not communicate via gap junctions poorly cope with hypertonic environments thus explaining the rare occurrence of cancer coming from the kidney medulla.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3