Affiliation:
1. Department of Medicine, University of Chicago, Illinois 60637.
Abstract
The newly developed atomic force microscope (AFM) provides a unique window to the microworld of cells, subcellular structures, and biomolecules. The AFM can image the three-dimensional structure of biological specimens in a physiological environment. This enables real-time biochemical and physiological processes to be monitored at a resolution similar to that obtained for the electron microscope. The process of image acquisition is such that the AFM can also measure forces at the molecular level. In addition, the AFM can interact with the sample, thereby manipulating the molecules in a defined manner--nanomanipulation! The AFM has been used to image living cells and the underlying cytoskeleton, chromatin and plasmids, ion channels, and a variety of membranes. Dynamic processes such as crystal growth and the polymerization of fibrinogen and physicochemical properties such as elasticity and viscosity in living cells have been studied. Nanomanipulations, including dissection of DNA, plasma membranes, and cells, and transfer of synthetic structures have been achieved. This review describes the operating principles, accomplishments, and the future promise of the AFM.
Publisher
American Physiological Society
Cited by
361 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献