Biological applications of atomic force microscopy

Author:

Lal R.1,John S. A.1

Affiliation:

1. Department of Medicine, University of Chicago, Illinois 60637.

Abstract

The newly developed atomic force microscope (AFM) provides a unique window to the microworld of cells, subcellular structures, and biomolecules. The AFM can image the three-dimensional structure of biological specimens in a physiological environment. This enables real-time biochemical and physiological processes to be monitored at a resolution similar to that obtained for the electron microscope. The process of image acquisition is such that the AFM can also measure forces at the molecular level. In addition, the AFM can interact with the sample, thereby manipulating the molecules in a defined manner--nanomanipulation! The AFM has been used to image living cells and the underlying cytoskeleton, chromatin and plasmids, ion channels, and a variety of membranes. Dynamic processes such as crystal growth and the polymerization of fibrinogen and physicochemical properties such as elasticity and viscosity in living cells have been studied. Nanomanipulations, including dissection of DNA, plasma membranes, and cells, and transfer of synthetic structures have been achieved. This review describes the operating principles, accomplishments, and the future promise of the AFM.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 361 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3