Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy.

Author:

Barbee K A1,Davies P F1,Lal R1

Affiliation:

1. Department of Pathology, University of Chicago, Ill.

Abstract

We report the first topographical data of the surface of living endothelial cells at sub-light-microscopic resolution, measurements essential for a detailed understanding of force distribution in the endothelium subjected to flow. Atomic force microscopy was used to observe the surface topography of living endothelial cells in confluent monolayers maintained in static culture or subjected to unidirectional shear stress in laminar flow (12 dyne/cm2 for 24 hours). The surface of polygonal unsheared cells was smooth, with mean excursion of surface undulation between peak height (over the nucleus) and minima (at intercellular junctions) of 3.4 +/- 0.7 microns (mean +/- SD); the mean height to length ratio was 0.11 +/- 0.02. In cells that were aligned in the direction of flow after a 24-hour exposure to laminar shear stress, height differentials were significantly reduced (mean, 1.8 +/- 0.5 micron), and the mean height to length ratio was 0.045 +/- 0.009. Calculation of maximum shear stress and maximum gradient of shear stress (delta tau/delta x, where tau is shear stress at the cell surface) at constant flow velocity revealed substantial streamling of aligned cells that reduced delta tau/delta x by more than 50% at a nominal shear stress of 10 dyne/cm2. Aligned cells exhibited ridges extending in the direction of flow that represented imprints of submembranous F-actin stress-fiber bundles mechanically coupled to the cell membrane. The surface ridges, approximately 50 nm in height and 200 to 1000 nm in width, were particularly prominent in the periphery of the aligned cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 308 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3