Fibronectin upregulates cGMP-dependent protein kinase type Iβ through C/EBP transcription factor activation in contractile cells

Author:

Chamorro-Jorganes Aranzazu1,Calleros Laura1,Griera Mercedes1,Saura Marta1,Luengo Alicia1,Rodriguez-Puyol D.12,Rodriguez-Puyol M.1

Affiliation:

1. Department of Physiology, Universidad de Alcalá, and

2. Nephrology Section and Research Unit, Hospital Universitario “Príncipe de Asturias,” Instituto “Reina Sofia” de Investigación Nefrológica (IRSIN), Alcalá de Henares, Madrid, Spain

Abstract

The nitric oxide (NO)-soluble guanylate cyclase (sGC) pathway exerts most of its cellular actions through the activation of the cGMP-dependent protein kinase (PKG). Accumulation of extracellular matrix is one of the main structural changes in pathological conditions characterized by a decreased activity of this pathway, such as hypertension, diabetes, or aging, and it is a well-known fact that extracellular matrix proteins modulate cell phenotype through the interaction with membrane receptors such as integrins. The objectives of this study were 1) to evaluate whether extracellular matrix proteins, particularly fibronectin (FN), modulate PKG expression in contractile cells, 2) to analyze the mechanisms involved, and 3) to evaluate the functional consequences. FN increased type I PKG (PKG-I) protein content in human mesangial cells, an effect dependent on the interaction with β1-integrin. The FN upregulation of PKG-I protein content was due to increased mRNA expression, determined by augmented transcriptional activity of the PKG-I promoter region. Akt and the transcription factor CCAAT enhancer-binding protein (C/EBP) mediated the genesis of these changes. FN also increased PKG-I in another type of contractile cell, rat vascular smooth muscle cells (RVSMC). Tirofiban, a pharmacological analog of FN, increased PKG-I protein content in RVSMC and rat aortic walls and magnified the hypotensive effect of dibutyryl cGMP in conscious Wistar rats. The present results provide evidence of a mechanism able to increase PKG-I protein content in contractile cells. Elucidation of this novel mechanism provides a rationale for future pharmacotherapy in certain vascular diseases.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3