STAT1-mediated signal integration between IFNγ and LPS leads to increased EC and SMC activation and monocyte adhesion

Author:

Sikorski Krzysztof1,Chmielewski Stefan12,Przybyl Lukasz1,Heemann Uwe2,Wesoly Joanna1,Baumann Marcus2,Bluyssen Hans A. R.1

Affiliation:

1. Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland;

2. Department of Nephrology, Klinikum rechts der Isar, Munich, Germany

Abstract

Inflammation plays an important role in host defenses against infectious agents and injury, but it also contributes to the pathophysiology of atherosclerosis. Signal transducer and activated transcription 1 (STAT1) has been identified as a point of convergence for the cross talk between the pro-inflammatory cytokine interferon γ (IFNγ) and the Toll-like receptor-4 (TLR4) ligand LPS in immune cells. However, there is no information available on the role of STAT1 in TLR4-mediated progression of atherosclerosis and on potential synergism between lipopolysaccharides (LPS) and IFNγ signaling in cells from the vasculature. Cultured human microvascular endothelial cells (HMECs) exposed to LPS activated STAT1 in a delayed manner that was inhibited by cycloheximide treatment. Pretreatment of HMECs as well as primary vascular smooth muscle cells (VSMCs) with IFNγ followed by LPS resulted in a significant increase in STAT1 phosphorylation compared with both factors alone. Increased STAT1 protein levels, strictly mediated by IFNγ, correlated with the augmented STAT1 phosphorylation that was absent in TLR4/cells. As assessed by PCR, Western analysis, and ELISA, this coincided with increased expression of the chemokine interferon gamma-induced protein 10 kDa (IP-10) and the adhesion molecule ICAM-1 in a TLR4-dependent manner.The STAT1-inhibitor fludarabine markedly reduced these effects as well as IFNγ and LPS-dependent adhesion of U937 cells to endothelial cells, emphasizing the potential importance of STAT1 in the integration of both signals. With the established roles of IFNγ and TLRs in atherosclerotic pathology, the STAT1-dependent signal integration between IFNγ and TLR in ECs and VSMCs in response to exogenous and endogenous atherogenic ligands could result in amplification of pro-inflammatory responses in the damaged vessel and be a novel mechanism involved in the initiation and progression of atherosclerosis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3