Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis

Author:

Jiang Yu,Qian Hai-YanORCID

Abstract

AbstractAtherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.

Funder

Foundation for Clinical and Translational Medical Research, Central Public Welfare Research of Chinese Academy of Medical Sciences

Natural Science Foundation of Beijing Municipality

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3