Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+conductance in rat choroid plexus epithelial cells

Author:

Speake Tracey1,Kibble Jonathan D.1,Brown Peter D.1

Affiliation:

1. School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom

Abstract

The choroid plexuses secrete, and maintain the composition of, the cerebrospinal fluid. K+channels play an important role in these processes. In this study the molecular identity and properties of the delayed-rectifying K+(Kv) conductance in rat choroid plexus epithelial cells were investigated. Whole cell K+currents were significantly reduced by 10 nM dendrotoxin-K and 1 nM margatoxin, which are specific inhibitors of Kv1.1 and Kv1.3 channels, respectively. A combination of dendrotoxin-K and margatoxin caused a depolarization of the membrane potential in current-clamp experiments. Western blot analysis indicated the presence of Kv1.1 and Kv1.3 proteins in the choroid plexus. Furthermore, the Kv1.3 and Kv1.1 proteins appear to be expressed in the apical membrane of the epithelial cells in immunocytochemical studies. The Kv conductance was inhibited by 1 μM serotonin (5-HT), with maximum inhibition to 48% of control occurring in 8 min ( P < 0.05 by Student's t-test for paired data). Channel inhibition by 5-HT was prevented by the 5-HT2Cantagonist mesulergine (300 nM). It was also attenuated in the presence of calphostin C (a protein kinase C inhibitor). The conductance was partially inhibited by 1,2-dioctanoyl- sn-glycerol and phorbol 12-myristate 13-acetate, both of which activate protein kinase C. These data suggest that 5-HT acts at 5-HT2Creceptors to activate protein kinase C, which inhibits the Kv channels. In conclusion, Kv1.1 and Kv1.3 channels make a significant contribution to K+efflux at the apical membrane of the choroid plexus.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3