Alteration of microtubule polymerization modulates arteriolar vasomotor tone

Author:

Platts Steven H.1,Falcone Jeff C.2,Holton William T.1,Hill Michael A.3,Meininger Gerald A.1

Affiliation:

1. Cardiovascular Research Institute and Department of Medical Physiology, Texas A&M University System Health Science Center, College Station, Texas 77843-1114;

2. Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky 40292; and

3. Department of Human Biology and Movement Science, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia

Abstract

Microtubules are important cytoskeletal elements that have been shown to play a major role in many cellular processes because of their mechanical properties and/or their participation in various cell signaling pathways. We tested the hypothesis that depolymerization of microtubules would alter vascular smooth muscle (VSM) tone and hence contractile function. In our studies, isolated cremaster arterioles exhibited significant vasoconstriction that developed over a 20- to 40-min period when they were treated with microtubule depolymerizing drugs colchicine (10 μM), nocodazole (10 μM), or demecolcine (10 μM). Immunofluorescent labeling of microtubules in cultured rat VSM revealed that both colchicine and nocodazole caused microtubule depolymerization over a similar time course. The vasoconstriction was maintained over a wide range of intraluminal pressures (30–170 cmH2O). The increased tone was not affected by endothelial denudation, suggesting that it was due to an effect on VSM. Microtubule depolymerization with demecolcine or colchicine had no effect on VSM intracellular Ca2+ concentration ([Ca2+]i). These data indicate that microtubules significantly interact with processes leading to the expression of vasomotor tone. The mechanism responsible for the effect of microtubules on vasomotor tone appears to be independent of both the endothelium and an increase in VSM [Ca2+]i.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3