Dynamics of neutrophil extravasation and vascular permeability are uncoupled during aseptic cutaneous wounding

Author:

Kim Min-Ho,Curry Fitz-Roy E.,Simon Scott I.

Abstract

Transport of macromolecules and transmigration of leukocytes across vascular endothelium are regulated by a tight molecular junction, but the mechanisms by which these two inflammatory events are differentially controlled in time and magnitude during aseptic cutaneous wounding remain elusive. A real-time fluorescence imaging technique was developed to simultaneously track influx of Alexa 680-labeled albumin and genetically tagged enhanced green fluorescent protein-neutrophils [polymorphonuclear neutrophils (PMN)] within the wound bed. Vascular permeability increased approximately threefold more rapidly than the rate of PMN influx, reaching a maximum at 12 h, on the order of ∼0.15% per minute versus ∼0.05% per minute for PMN influx, which peaked at 18 h. Systemic depletion of PMN with antibody blocked their extravasation to the wound but did not alter the increase in vascular permeability. In contrast, pretreatment with antiplatelet GPIb decreased permeability by 25% and PMN influx by 50%. Hyperpermeability stimulated by the endothelium-specific agonists VEGF or thrombin at 24 h postwounding was completely inhibited by blocking Rho-kinase-dependent signaling, whereas less inhibition was observed at 1 h and neutrophil influx was not perturbed. These data suggest that in aseptic wounds, the endothelium maintains a tight junctional barrier to protein leakage that is independent of neutrophil transmigration, partially dependent on circulating platelets, and associated with Rho-kinase-dependent signaling.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3