Vascular endothelial growth factor increases microvascular permeability via a Ca(2+)-dependent pathway

Author:

Bates D. O.1,Curry F. E.1

Affiliation:

1. Department of Human Physiology, School of Medicine, University ofCalifornia, Davis 95616, USA. dob1@le.ac.uk

Abstract

We tested the hypothesis that vascular endothelial growth factor (VEGF) increases microvascular permeability by increasing calcium influx into endothelial cells forming the vessel walls. We measured microvessel hydraulic conductivity (Lp) in isolated perfused MS-222-anesthetized frog mesenteric microvessels during perfusion with VEGF under conditions that attenuate calcium influx. VEGF increased Lp during a second successive perfusion in the same microvessel by 7.8-fold, which was not significantly different from that brought about by an initial application of VEGF (5.0-fold). However, under depolarizing conditions, the increase in Lp was reduced from 11.1- to 5.6-fold when depolarized to -10 mV (58 mM K+) and to 2.8-fold when depolarized to 0 mV (100 mM K+). Attenuating calcium influx by the addition of nickel ions resulted in a similar attenuation of the increase in Lp (from 13- to 2.5-fold). VEGF also increased the intracellular calcium concentration in endothelial cells of perfused microvessels as determined by measurement with fura 2. We therefore conclude that VEGF increases Lp by increasing calcium influx.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3