Early secretory pathway-resident Zn transporter proteins contribute to cellular sphingolipid metabolism through activation of sphingomyelin phosphodiesterase 1

Author:

Ueda Sachiko1,Manabe Yuki2ORCID,Kubo Naoya1,Morino Naho1,Yuasa Hana3,Shiotsu Miku1,Tsuji Tokuji1,Sugawara Tatsuya2ORCID,Kambe Taiho1ORCID

Affiliation:

1. Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan

2. Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

3. Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University, Kyoto, Japan

Abstract

Sphingomyelin phosphodiesterase 1 (SMPD1) converts sphingomyelin into ceramide and phosphocholine; hence, loss of SMPD1 function causes abnormal accumulation of sphingomyelin in lysosomes, which results in the lipid-storage disorder Niemann–Pick disease (types A and B). SMPD1 activity is dependent on zinc, which is coordinated at the active site of the enzyme, and although SMPD1 has been suggested to acquire zinc at the sites where the enzyme is localized, precisely how SMPD1 acquires zinc remains to be clarified. Here, we addressed this using a gene-disruption/reexpression strategy. Our results revealed that Zn transporter 5 (ZNT5)-ZNT6 heterodimers and ZNT7 homodimers, which localize in the compartments of the early secretory pathway, play essential roles in SMPD1 activation. Both ZNT complexes contribute to cellular sphingolipid metabolism by activating SMPD1 because cells lacking the functions of the two complexes exhibited a reduced ceramide to sphingomyelin content ratio in terms of their dominant molecular species and an increase in the sphingomyelin content in terms of three minor species. Moreover, mutant cells contained multilamellar body-like structures, indicative of membrane stacking and accumulation, in the cytoplasm. These findings provide novel insights into the molecular mechanism underlying the activation of SMPD1, a key enzyme in sphingolipid metabolism.

Funder

Kao Melanin Workshop

Lydia O'Leary Memorial Pias Dermatological Foundation

Cosmetology Research Foundation

MEXT | Japan Society for the Promotion of Science

Mitsubishi Foundation

Nagase Science Technology Foundation

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3