Affiliation:
1. Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University , Kyoto 606-8502, Japan
Abstract
Zinc (Zn2+), an essential trace element, binds to various proteins, including enzymes, transcription factors, channels, and signaling molecules and their receptors, to regulate their activities in a wide range of physiological functions. Zn2+ proteome analyses have indicated that approximately 10% of the proteins encoded by the human genome have potential Zn2+ binding sites. Zn2+ binding to the functional site of a protein (for enzymes, the active site) is termed Zn2+ metalation. In eukaryotic cells, approximately one-third of proteins are targeted to the endoplasmic reticulum; therefore, a considerable number of proteins mature by Zn2+ metalation in the early secretory pathway compartments. Failure to capture Zn2+ in these compartments results in not only the inactivation of enzymes (apo-Zn2+ enzymes), but also their elimination via degradation. This process deserves attention because many Zn2+ enzymes that mature during the secretory process are associated with disease pathogenesis. However, how Zn2+ is mobilized via Zn2+ transporters, particularly ZNTs, and incorporated in enzymes has not been fully elucidated from the cellular perspective and much less from the biophysical perspective. This review focuses on Zn2+ enzymes that are activated by Zn2+ metalation via Zn2+ transporters during the secretory process. Further, we describe the importance of Zn2+ metalation from the physiopathological perspective, helping to reveal the importance of understanding Zn2+ enzymes from a biophysical perspective.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan Society for the Promotion of Science
KOSE Cosmetology Research Foundation
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献