Ca2+-activated Cl− channel currents in mammary secretory cells from lactating mouse

Author:

Kamikawa Akihiro1,Ichii Osamu2,Sakazaki Junpei1,Ishikawa Toru1

Affiliation:

1. Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; and

2. Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan

Abstract

The Cl secretion via Ca2+-activated Cl channel (CaCC) is critical for fluid secretion in exocrine glands like the salivary gland. Also in the mammary gland, it has been hypothesized that CaCC plays an important role in the secretion of Cl and aqueous phase of milk. However, there has been no evidence for the functional expression of CaCC in native mammary secretory (MS) cells of lactating animals. We therefore assessed membrane current in MS cells that were freshly isolated from lactating mice using whole cell patch-clamp techniques. In MS cells, we detected CaCC current that exhibited the following characteristics: 1) Ca2+-dependent activation at the concentrations of submicromolar range; 2) voltage-dependent activation; 3) slow kinetics for activation and deactivation; 4) outward rectification of the steady-state current; 5) anion permeability in the sequence of I > NO3 > Br > Cl >> glutamate; 6) inhibition by Cl channel blockers (niflumic acid, DIDS, and CaCCinh-A01). These characteristics of native CaCC current were similar to reported characteristics of heterologously expressed TMEM16A. RT-PCR analyses showed the expression of multiple CaCC channels including TMEM16A, Best1, and Best3 in the mammary glands of lactating mice. Immunohistochemical staining revealed the localization of TMEM16A protein at the apical membrane of the MS cells. Collectively, our data strongly suggest that MS cells functionally express CaCC, which is at least partly constituted by TMEM16A. The CaCC such as TMEM16A at the apical membrane of the MS cells may influence the quantity and/or quality of milk.

Funder

Akiyama Life Science Foundation

Kuribayashi Ikuei Foundation

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3