Modulation of hepatocellular swelling-activated K+currents by phosphoinositide pathway-dependent protein kinase C

Author:

Lan Wen-Zhi,Wang Penny Y. T.,Hill Ceredwyn E.

Abstract

K+channels participate in the regulatory volume decrease (RVD) accompanying hepatocellular nutrient uptake and bile formation. We recently identified KCNQ1 as a molecular candidate for a significant fraction of the hepatocellular swelling-activated K+current ( IKVol). We have shown that the KCNQ1 inhibitor chromanol 293B significantly inhibited RVD-associated K+flux in isolated perfused rat liver and used patch-clamp techniques to define the signaling pathway linking swelling to IKVolactivation. Patch-electrode dialysis of hepatocytes with solutions that maintain or increase phosphatidylinositol 4,5-bisphosphate (PIP2) increased IKVol, whereas conditions that decrease cellular PIP2decreased IKVol. GTP and AlF4stimulated IKVoldevelopment, suggesting a role for G proteins and phospholipase C (PLC). Supporting this, the PLC blocker U-73122 decreased IKVoland inhibited the stimulatory response to PIP2or GTP. Protein kinase C (PKC) is involved, because K+current was enhanced by 1-oleoyl-2-acetyl- sn-glycerol and inhibited after chronic PKC stimulation with phorbol 12-myristate 13-acetate (PMA) or the PKC inhibitor GF 109203X. Both IKVoland the accompanying membrane capacitance increase were blocked by cytochalasin D or GF 109203X. Acute PMA did not eliminate the cytochalasin D inhibition, suggesting that PKC-mediated IKVolactivation involves the cytoskeleton. Under isotonic conditions, a slowly developing K+current similar to IKVolwas activated by PIP2, lipid phosphatase inhibitors to counter PIP2depletion, a PLC-coupled α1-adrenoceptor agonist, or PKC activators and was depressed by PKC inhibition, suggesting that hypotonicity is one of a set of stimuli that can activate IKVolthrough a PIP2/PKC-dependent pathway. The results indicate that PIP2indirectly activates hepatocellular KCNQ1-like channels via cytoskeletal rearrangement involving PKC activation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3