Affiliation:
1. Department of Physiology, Michigan State University, East Lansing48824, USA.
Abstract
Studies of skinned fibers suggest that the rate of ATP turnover in skeletal muscle is depressed by acidosis. To examine whether this occurs in intact muscles, the ATP cost of isometric contractions was measured in ex vivo, arterially perfused cat biceps (predominantly fast-twitch) and soleus (slow-twitch) muscles under normocapnic (5% CO2) and hypercapnic (70% CO2) conditions. Hypercapnia decreased extracellular pH from 7.4 to 6.7 and intracellular pH from 7.1 to 6.5 (soleus) or 6.6 (biceps) but had no significant effect on the phosphocreatine (PCr)-to-ATP ratio in muscles at rest. The ATP cost of contraction was estimated from PCr changes, measured by gating the acquisition of 31P-nuclear magnetic resonance spectra to times before and after brief tetani (1 s at 100 Hz and 2 s at 25 Hz for biceps and soleus, respectively) or 10-s trains of twitches (2 and 1 Hz, respectively). Peak isometric force and the ATP cost of tetanic contraction (PCr/force x time integral) were not significantly different under hypercapnic compared with normocapnic conditions in either muscle (mean: 7.97 and 2.44 micromol x kg(-1) x s(-1) for biceps and soleus, respectively). Twitch force and the ATP cost per twitch decreased by nearly 50% during hypercapnic perfusion in both muscle types. The results indicate that hypercapnic acidosis has no significant effect on the ATPase rate per active myosin head in intact mammalian skeletal muscle.
Publisher
American Physiological Society
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献