Dietary Nitrate Supplementation Enhances Performance and Speeds Muscle Deoxyhaemoglobin Kinetics during an End-Sprint after Prolonged Moderate-Intensity Exercise

Author:

Rowland Samantha N.,Da Boit Mariasole,Tan RachelORCID,Robinson George P.,O’Donnell Emma,James Lewis J.,Bailey Stephen J.ORCID

Abstract

Short-term dietary nitrate (NO3−) supplementation has the potential to enhance performance during submaximal endurance, and short-duration, maximal-intensity exercise. However, it has yet to be determined whether NO3− supplementation before and during submaximal endurance exercise can improve performance during a short-duration, maximal-intensity end-sprint. In a randomised, double-blind, crossover study, 9 recreationally active men ingested NO3−-rich (BR: 8 mmol NO3−/day) and NO3−-depleted (PL: 0.75 mmol NO3−/day) beetroot powder for 7 days. On day 7, participants completed 2 h of moderate-intensity cycling, which immediately transitioned into a 60 s maximal-intensity end-sprint, with supplements ingested 2 h before and 1 h into the moderate-intensity exercise bout. Plasma [NO3−] and [NO2−] were higher in BR compared to PL pre- and post-exercise (p < 0.05). Post-exercise plasma [NO3−] was higher than pre-exercise (562 ± 89 µM vs. 300 ± 73 µM; p < 0.05) and plasma [NO2−] was not significantly different pre- (280 ± 58 nM) and post-exercise (228 ± 63 nM) in the BR condition (p > 0.05). Mean power output during the final 30 s of the end-sprint was greater after BR (390 ± 38 W) compared to PL (365 ± 41 W; p < 0.05). There were no differences between BR and PL in any muscle oxygenation variables during moderate-intensity cycling (p > 0.05), but muscle [deoxyhaemoglobin] kinetics was faster during the end-sprint in BR (6.5 ± 1.4 s) compared to PL (7.3 ± 1.4 s; p < 0.05). These findings suggest that NO3− supplementation has the potential to improve end-sprint performance in endurance events when ingested prior to and during exercise.

Funder

Bio-Gen Extracts PVT Limited

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3