Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility

Author:

Gramolini A.1,Renaud J. M.1

Affiliation:

1. Department of Physiology, University of Ottawa, Ontario, Canada.

Abstract

The objectives of this study were to determine the metabolic conditions in which ATP-sensitive K+ channels (K+(ATP) channels) contribute to a decrease in force. Sartorius muscles of the frog Rana pipiens were subjected to a 60-min metabolic inhibition by exposing them to cyanide (2 mM) and iodoacetate (1 mM). Muscles were exposed to glibenclamide (100 microM) to block K+ATP channels either 60 min before or 8 or 18 min into metabolic inhibition. Resting potentials, action potentials, and membrane conductance were measured using intracellular microelectrodes. Tetanic and resting tension were measured with a force transducer. ATP, ADP, and phosphocreatine (PCr) were measured by high-pressure liquid chromatography. Glibenclamide completely blocked the shortening of action potential but only partially blocked the increase in membrane conductance. When glibenclamide was added 60 min before metabolic inhibition, the decrease in tetanic force was faster than in control muscle (no glibenclamide). This faster decrease in tetanic force was associated with significant membrane depolarizations, greater increases in resting tension, greater depletions of ATP and PCr contents, and greater increases in ADP content. Addition of glibenclamide 8 min into metabolic inhibition caused an increase in tetanic force followed by a faster decrease compared with control. Addition of glibenclamide 18 min into metabolic inhibition had no effect on the tetanic force compared with control muscles. The data indicate that K+ATP channels 1) were activated during metabolic inhibition and 2) contributed to the decrease in tetanic force but also 3) had a myoprotective effect protecting skeletal muscle against muscle function impairment.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3