cAMP activates an ATP-conductive pathway in cultured shark rectal gland cells

Author:

Cantiello H. F.1,Jackson G. R.1,Prat A. G.1,Gazley J. L.1,Forrest J. N.1,Ausiello D. A.1

Affiliation:

1. Renal Unit, Massachusetts General Hospital East, and Department ofMedicine, Harvard Medical School, Charlestown 02129, USA.

Abstract

The molecular mechanisms associated with ATP transport and release into the extracellular milieu are largely unknown. To assess the presence of endogenous ATP-conductive pathway(s) in shark rectal gland (SRG) cells, patch-clamp techniques were applied to primary cultures of SRG cells. Whole cell currents were obtained with either intracellular tris(hydroxymethyl)aminomethane (Tris) or Mg2+ salts of ATP (200 mM nominal ATP) and 280 mM NaCl bathing solution. Basal currents showed a sizable ATP permeability for outward movement of MgATP. Adenosine 3',5'-cyclic monophosphate (cAMP) stimulation significantly increased the whole cell conductance (with either intracellular Tris-ATP or MgATP). Symmetrical whole cell ATP currents were also observed after cAMP activation, thus consistent with ATP as the main charge carrier. The cAMP-inducible ATP currents were insensitive to the Cl- channel blockers 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, diphenylamine-2-carboxylate, and anthracene-9-carboxylic acid but were readily blocked by nifedipine (400 microM) and glibenclamide (400 microM). The nature of the electrodiffusional ATP movement was further assessed by single-channel analysis of either MgATP or Tris-ATP currents in excised inside-out patches, both spontaneous and after activation with protein kinase A. Single-channel ATP currents were inhibited by either nifedipine or glibenclamide. Thus SRG cells express endogenous ATP-permeable pathways both before and after cAMP stimulation. Electrodiffusional ATP movement by SRG cells may play a significant role in the transport and delivery of cellular ATP to the extracellular milieu, which may help coordinate the dynamics of the epithelial secretory response in this cell model.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research in the 1990s: Molecular Biology Comes to the MDIBL;Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory;2015

2. Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus;American Journal of Physiology-Cell Physiology;2012-04-01

3. Cell and molecular biology of the spiny dogfish Squalus acanthias and little skate Leucoraja erinacea: insights from in vitro cultured cells;Journal of Fish Biology;2012-02-07

4. Chloride channels in normal and cystic fibrosis human erythrocyte membrane;Blood Cells, Molecules, and Diseases;2007-07

5. ATP release via anion channels;Purinergic Signalling;2005-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3