Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus

Author:

Parsons Sean P.1,Kunze Wolfgang A.1,Huizinga Jan D.1

Affiliation:

1. Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada

Abstract

Ion channels are fundamental to gastrointestinal pacemaking by interstitial cells of Cajal (ICC). Previously, we have recorded a high-conductance chloride channel (HCCC) from ICC, both in culture and in situ, associated with the myenteric plexus. The biophysical properties of the HCCC (conductance, subconductances, voltage- and time-dependent inactivation) suggest it is a member of a class called the maxi-anion channels. In this study we further investigated the properties of the HCCC in situ. Our main finding was that the HCCC is not strictly a chloride channel but has a relative sodium-chloride permeability (PNa/Cl) of 0.76 to 1.64 (depending on the method of measurement). Therefore, we have renamed the HCCC the “maxi-channel.” A maxi-channel was also expressed by pericytes associated with the vasculature near the myenteric plexus. This had a lower PNa/Cl (0.33 to 0.49, depending on the method of measurement) but similar conductance (326 ± 7 vs. 316 ± 24 pS for ICC). This is the first report of cation permeability equaling anion permeability in a maxi-anion channel. As such, the properties of the maxi-channels described in this article may have implications for the maxi-anion channel field, as well as for studies of their role in ICC and pericytes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3