Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites

Author:

Bahn Andrew,Ljubojević Marija,Lorenz Heiko,Schultz Christian,Ghebremedhin Estifanos,Ugele Bernhard,Sabolić Ivan,Burckhardt Gerhard,Hagos Yohannes

Abstract

Tryptophan metabolites such as kynurenate (KYNA), xanthurenate (XA), and quinolinate are considered to have an important impact on many physiological processes, especially brain function. Many of these metabolites are secreted with the urine. Because organic anion transporters (OATs) facilitate the renal secretion of weak organic acids, we investigated whether the secretion of bioactive tryptophan metabolites is mediated by OAT1 and OAT3, two prominent members of the OAT family. Immunohistochemical analyses of the mouse kidneys revealed the expression of OAT1 to be restricted to the proximal convoluted tubule (representing S1 and S2 segments), whereas OAT3 was detected in almost all parts of the nephron, including macula densa cells. In the mouse brain, OAT1 was found to be expressed in neurons of the cortex cerebri and hippocampus as well as in the ependymal cell layer of the choroid plexus. Six tryptophan metabolites, including the bioactive substances KYNA, XA, and the serotonin metabolite 5-hydroxyindol acetate inhibited [3H] p-aminohippurate (PAH) or 6-carboxyfluorescein (6-CF) uptake by 50–85%, demonstrating that these compounds interact with OAT1 as well as with OAT3. Half-maximal inhibition of mOAT1 occurred at 34 μM KYNA and 15 μM XA, and it occurred at 8 μM KYNA and 11.5 μM XA for mOAT3. Quinolinate showed a slight but significant inhibition of [3H]PAH uptake by mOAT1 and no alteration of 6-CF uptake by mOAT3. [14C]-Glutarate (GA) uptake was examined for both transporters and demonstrated differences in the transport rate for this substrate by a factor of 4. Trans-stimulation experiments with GA revealed that KYNA and XA are substrates for mOAT1. Our results support the idea that OAT1 and OAT3 are involved in the secretion of bioactive tryptophan metabolites from the body. Consequently, they are crucial for the regulation of central nervous system tryptophan metabolite concentration.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3