Sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis

Author:

Dumonteil E.1,Barre H.1,Meissner G.1

Affiliation:

1. Department of Biochemistry and Biophysics, University of NorthCarolina at Chapel Hill 27599-7260.

Abstract

In birds, prolonged cold exposure induces the development of a nonshivering thermogenesis (NST) of muscular origin. NST is characterized by an increased heat production, which may be achieved by an increased ATP-dependent cycling of Ca2+ between the sarcoplasmic reticulum (SR) and cytosolic compartments in muscle. In this study, the effects of prolonged cold exposure on SR function were assessed by determining the contents of the SR Ca(2+)-ATPase and Ca2+ release channel (ryanodine receptor) in the gastrocnemius muscle of ducklings (Cairina moschata) kept at thermoneutrality (25 degrees C) or cold acclimated (4 degrees C, 5 wk). Measurement of oxalate-supported 45Ca2+ uptake by whole muscle homogenates revealed that the SR Ca(2+)-ATPase activity, and fraction of vesicles containing a ryanodine-sensitive Ca2+ release channel were increased by 30-50% in response to prolonged cold exposure. Sodium dodecyl sulfate-polyacrylamide gel and immunoblot analysis, 45Ca2+ uptake, Ca(2+)-ATPase activity and [3H]ryanodine binding measurements with unfractionated and "heavy" SR membrane fractions also indicated an elevated Ca(2+)-ATPase and Ca2+ release channel content in cold-acclimated ducklings. These results showed that the contents of two components directly involved in Ca2+ cycling by the SR are increased by cold acclimation, and we suggest that this is related to NST.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3