Modification of epithelial permeability by cationic polypeptides

Author:

Tzan C. J.1,Berg J. R.1,Lewis S. A.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas MedicalBranch, Galveston 77555-0641.

Abstract

It has been demonstrated that protamine sulfate (PS; a cationic polypeptide composed of 70% arginine) increases the apical membrane conductance of the mammalian urinary bladder. In this report, synthetic cationic polypeptides (CpP; e.g., polyarginine) were used to determine whether the response of the bladder to PS was due to its cationic nature (i.e., its arginine content). We demonstrate that CpP induce a large increase in the cation and anion conductance of the apical membrane of the rabbit urinary bladder epithelium. The modulation of the membrane conductance by CpP is dependent upon a number of parameters. 1) The magnitude of the conductance change was voltage dependent. 2) An increase in the total charge per molecule increased the rate of conductance change. 3) An increase in the charge density (ratio of charged amino acids to total amino acids) increased the rate of change of conductance. 4) La3+ inhibited the ability of CpP to alter the membrane conductance. 5) The rate of reversal of the CpP-induced conductance was dependent upon the total charge per molecule as well as the charge density. 6) The level of self-inhibition (ability of solution CpP to inhibit the CpP-induced membrane conductance) was inversely correlated with the charge density and was also concentration dependent, with less inhibition occurring at low mucosal CpP concentrations. These data are consistent with a model developed to describe the effect of PS on the conductive properties of the urinary bladder epithelium.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3