Sex-Dependent Differences in Blood–Urine Barrier Are Subtle but Significant in Healthy and Chronically Inflamed Mouse Bladders

Author:

Peskar Dominika1,Kerec Kos Mojca2ORCID,Cerkvenik Uroš1ORCID,Nemec Svete Alenka3ORCID,Erman Andreja1

Affiliation:

1. Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia

2. Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia

3. Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract

The urothelium is a vital permeability barrier that prevents the uncontrolled flow of urinary components into and out of the bladder interstitium. Our study addressed the question of possible sex-specific variations in the urothelium of healthy mice and their impact on chronic bladder inflammation. We found that healthy female bladders have a less robust barrier function than male bladders, as indicated by significant differences in transepithelial electrical resistance (TEER) values. These differences could be attributed to detected higher claudin 2 mRNA expression and a less pronounced glycocalyx in females than in males. In addition, TEER measurements showed delayed barrier recovery in chronically inflamed female bladders. We found subtle differences in the expressions of genes involved in the regulation of the actin cytoskeleton between the sexes, as well as pronounced urothelial hyperplasia in females compensating for attenuated barrier function. The identified genetic variations in glycosylation pathways may also contribute to this divergence. Our findings add to the growing body of literature on the intricate sex-specific nuances of urothelial permeability function and their implications for chronic bladder inflammation. Understanding these differences could lead to tailored diagnostic and therapeutic approaches in the treatment of bladder disorders in the future.

Funder

Slovenian Research and Innovation Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3