Identification of clathrin and clathrin adaptors on tubulovesicles of gastric acid secretory (oxyntic) cells

Author:

Okamoto Curtis T.1,Karam Sherif M.2,Jeng Young Y.1,Forte John G.2,Goldenring James R.3

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles 90033;

2. Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; and

3. Institute for Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912-3175

Abstract

γ-Adaptin and clathrin heavy chain were identified on tubulovesicles of gastric oxyntic cells with the anti-γ-adaptin monoclonal antibody (MAb) 100/3 and an anti-clathrin heavy chain MAb (MAb 23), respectively. In Western blots, crude gastric microsomes from rabbit and rat and density gradient-purified, H-K-ATPase-rich microsomes from these same species were immunoreactive for γ-adaptin and clathrin. In immunofluorescent labeling of isolated rabbit gastric glands, anti-γ-adaptin and anti-clathrin heavy chain immunoreactivity appeared to be concentrated in oxyntic cells. In primary cultures of rabbit oxyntic cells, the immunocytochemical distribution of γ-adaptin immunoreactivity was similar to that of the tubulovesicular membrane marker in oxyntic cells, the H-K-ATPase. Further biochemical characterization of the tubulovesicular γ-adaptin-containing complex suggested that it has a subunit composition that is typical of that for a clathrin adaptor: in addition to the γ-adaptin subunit, it contains a β-adaptin subunit and other subunits of apparent molecular masses of 50 kDa and 19 kDa. From solubilized gastric microsomes from rabbit, γ-adaptin could be copurified with the major cargo protein of tubulovesicles, the H-K-ATPase. Thus this tubulovesicular coat may bind directly to the H-K-ATPase and may thereby mediate the regulated trafficking of the H-K-ATPase at the apical membrane of the oxyntic cell during the gastric acid secretory cycle. Given the similarities of the regulated trafficking of the H-K-ATPase with recycling of cargo through the apical recycling endosome of many epithelial cells, we propose that tubulovesicular clathrin and adaptors may regulate some part of an apical recycling pathway in other epithelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3