Passive K+-Cl- fluxes in low-K+ sheep erythrocytes: modulation by A23187 and bivalent cations

Author:

Lauf P. K.

Abstract

A fraction of the ouabain-resistant (OR) K+ flux of low-K+ (LK) sheep erythrocytes is Cl- dependent (K+-Cl- transport) and is activated reversibly by cell swelling or irreversibly by treatment with N-ethylmaleimide (NEM). The effect of the ionophore A23187 plus bivalent cations (Me2+) or ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) was studied on K+-Cl- transport in control or NEM-treated LK cells. The following observations were made. 1) A23187 (6 microM), at a hematocrit of 10% (vol/vol) and in the presence of 1 mM EGTA, activated severalfold OR K+-Cl- transport in shrunken or swollen cells but failed to stimulate further K+-Cl- flux in NEM-treated cells. 2) In the absence of EGTA, but at very low external Ca2+ concentrations [( Ca2+]o = 10(-7) M), A23187 stimulated OR K+-Cl- flux in controls less than with EGTA and inhibited it slightly in NEM-treated cells. 3) When [Ca2+]o was raised to 10(-3) M, an almost complete inhibition of OR K+-Cl- fluxes occurred in shrunken, swollen, or NEM-treated cells. 4) Other Me2+ inhibited OR K+-Cl- flux in the presence of A23187 in the following order of decreasing potency: Mn2+ much greater than Ca2+ greater than Mg2+ greater than Sr2+ much much greater than Ba2+. 5) Stimulation of OR K+-Cl- flux by A23187 +/- EGTA and inhibition by A23187 + Ca2+ were reversible and did not alter significantly cellular ATP. 6) The stimulatory effect of A23187 plus EGTA, perhaps by Me2+ removal, on K+-Cl- flux and its inhibition by Ca2+ were reversibly abolished in metabolically depleted cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3