K–Cl cotransport in red blood cells from patients with KCC3 isoform mutantsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease.

Author:

Lauf P.K.1234,Adragna N.C.1234,Dupre N.1234,Bouchard J.P.1234,Rouleau G.A.1234

Affiliation:

1. Cell Biophysics Group, Department of Pathology, Wright State University, Boonshoft School of Medicine, 3640 Col Glenn Hwy, Dayton, OH 45435, USA.

2. Cell Biophysics Group, Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH, 45435 USA.

3. Faculty of Medicine, Laval University, Québec City, QC, G1K 7P4Canada

4. Center for Study of Brain Research, CHUM Research Center, University of Montreal, Montréal, QC, H3C 3J7Canada.

Abstract

Red blood cells (RBCs) possess the K–Cl cotransport (KCC) isoforms 1, 3, and 4. Mutations within a given isoform may affect overall KCC activity. In a double-blind study, we analyzed, with Rb as a K congener, K fluxes (total flux, ouabain-sensitive Na+/K+ pump, and bumetanide-sensitive Na–K–2Cl cotransport, Cl-dependent, and ouabain- and bumetanide-insensitive KCC with or without stimulation by N-ethylmaleimide (NEM) and staurosporine or Mg removal, and basal channel-mediated fluxes, osmotic fragility, and ions and water in the RBCs of 8 controls, and of 8 patients with hereditary motor and sensory neuropathy with agenesis of corpus callosum (HMSN–ACC) with defined KCC3 mutations (813FsX813 and Phe529FsX532) involving the truncations of 338 and 619 C-terminal amino acids, respectively. Water and ion content and, with one exception, mean osmotic fragility, as well as K fluxes without stimulating agents, were similar in controls and HMSN–ACC RBCs. However, the NEM-stimulated KCC was reduced 5-fold (p < 0.0005) in HMSN–ACC vs control RBCs, as a result of a lower Vmax (p < 0.05) rather than a lower Km (p = 0.109), accompanied by corresponding differences in Cl activation. Low intracellular Mg activated KCC in 6 out of 7 controls vs 1 out of 6 HMSN–ACC RBCs, suggesting that regulation is compromised. The lack of differences in staurosporine-activated KCC indicates different action mechanisms. Thus, in HMSN–ACC patients with KCC3 mutants, RBC KCC activity, although indistinguishable from that of the control group, responded differently to biochemical stressors, such as thiol alkylation or Mg removal, thereby indirectly indicating an important contribution of KCC3 to overall KCC function and regulation.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference51 articles.

1. Hypertension in K-Cl Cotransporter-3 Knockout Mice

2. Regulation of K-Cl Cotransport: from Function to Genes

3. Signal transduction mechanisms of K+-Cl- cotransport regulation and relationship to disease

4. Identification of Key Functional Domains in the C Terminus of the K+-Cl– Cotransporters

5. Beutler, E. 2001. Composition of the erythrocyte. In Williams hematology. Edited by E. Beutler, M.A. Lichtman, B.S. Coller, T.J. Kipps, and U. Seligsohn. New York, McGraw-Hill. pp. 289–293.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3