Apical adenosine regulates basolateral Ca2+-activated potassium channels in human airway Calu-3 epithelial cells

Author:

Wang Dong,Sun Ying,Zhang Wei,Huang Pingbo

Abstract

In airway epithelial cells, apical adenosine regulates transepithelial anion secretion by activation of apical cystic fibrosis transmembrane conductance regulator (CFTR) via adenosine receptors and cAMP/PKA signaling. However, the potent stimulation of anion secretion by adenosine is not correlated with its modest intracellular cAMP elevation, and these uncorrelated efficacies have led to the speculation that additional signaling pathways may be involved. Here, we showed that mucosal adenosine-induced anion secretion, measured by short-circuit current ( Isc), was inhibited by the PLC-specific inhibitor U-73122 in the human airway submucosal cell line Calu-3. In addition, the Iscwas suppressed by BAPTA-AM (a Ca2+chelator) and 2-aminoethoxydiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor blocker), but not by PKC inhibitors, suggesting the involvement of PKC-independent PLC/Ca2+signaling. Ussing chamber and patch-clamp studies indicated that the adenosine-induced PLC/Ca2+signaling stimulated basolateral Ca2+-activated potassium (KCa) channels predominantly via A2Badenosine receptors and contributed substantially to the anion secretion. Thus, our data suggest that apical adenosine activates contralateral K+channels via PLC/Ca2+and thereby increases the driving force for transepithelial anion secretion, synergizing with its modulation of ipsilateral CFTR via cAMP/PKA. Furthermore, the dual activation of CFTR and KCachannels by apical adenosine resulted in a mixed secretion of chloride and bicarbonate, which may alter the anion composition in the secretion induced by secretagogues that elicit extracellular ATP/adenosine release. Our findings provide novel mechanistic insights into the regulation of anion section by adenosine, a key player in the airway surface liquid homeostasis and mucociliary clearance.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3