Immune-related intestinal chloride secretion. II. Effect of adenosine on T84 cell line

Author:

Barrett K. E.1,Cohn J. A.1,Huott P. A.1,Wasserman S. I.1,Dharmsathaphorn K.1

Affiliation:

1. Department of Medicine, University of California, San Diego92103.

Abstract

The inflammatory mediator adenosine caused sustained Cl- secretion across monolayers of T84 cells. The effect was promptly reversed by the adenosine receptor antagonist 8-phenyltheophylline and appeared to be mediated through an adenosine A2-receptor [rank order of potency: 5'-(N-ethyl)-carboxamido-adenosine (NECA) greater than adenosine greater than (-)-N6-(phenylisopropyl)adenosine (PIA) greater than or equal to (+)-PIA]. High doses of adenosine and its analogues increased cellular adenosine 3',5'-cyclic monophosphate (cAMP) but not guanosine 3',5'-cyclic monophosphate (cGMP) or free cytosolic Ca2+. However, lower concentrations of adenosine had maximal effects on Cl- secretion with little or no effect on cAMP. In other respects, Cl- secretion resembled that induced by cAMP-mediated secretagogues such as vasoactive intestinal peptide (VIP). Addition of both low and high doses of NECA activated basolateral K+ and apical Cl- channels, exhibited synergism with Ca2(+)-mediated secretagogues, did not produce additive effects with VIP or Escherichia coli heat-stable enterotoxin, and was associated with cAMP-dependent protein kinase-mediated protein phosphorylation. The results suggest that either adenosine mobilizes an intracellular pool of cAMP that is extremely efficiently coupled to the cAMP-dependent protein kinase and is thereafter rapidly destroyed or that second messenger(s) other than cAMP, cGMP, or Ca2+ are able to activate Cl- secretion in the T84 cell line. In the latter case, such messenger(s), as yet unidentified, might represent a final common pathway for cyclic nucleotide-activated Cl- secretion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3