Influence of microvascular endothelial cells on transcriptional regulation of proximal tubular epithelial cells

Author:

Aydin Sonia,Signorelli Sara,Lechleitner Thomas,Joannidis Michael,Pleban Clara,Perco Paul,Pfaller Walter,Jennings Paul

Abstract

In the renal cortex the peritubular capillary network and the proximal tubular epithelium cooperate in solute and water reabsorption, secretion, and inflammation. However, the mechanisms by which these two cell types coordinate such diverse functions remain to be characterized. Here we investigated the influence of microvascular endothelial cells on proximal tubule cells, using a filter-based, noncontact, close-proximity coculture of the human microvascular endothelial cell line HMEC-1 and the human proximal tubular epithelial cell line HK-2. With the use of DNA microarrays the transcriptomes of HK-2 cells cultured in mono- and coculture were compared. HK-2 cells in coculture exhibited a differential expression of 99 genes involved in pathways such as extracellular matrix (e.g., lysyl oxidase), cell-cell communication (e.g., IL-6 and IL-1β), and transport (e.g., GLUT3 and lipocalin 2). HK-2 cells also exhibited an enhanced paracellular gating function in coculture, which was dependent on HMEC-1-derived extracellular matrix. We identified a number of HMEC-1-enriched genes that are potential regulators of epithelial cell function such as extracellular matrix proteins (e.g., collagen I, III, IV, and V, laminin-α IV) and cytokines/growth factors (e.g., hepatocyte growth factor, endothelin-1, VEGF-C). This study demonstrates a complex network of communication between microvascular endothelial cells and proximal tubular epithelial cells that ultimately affects proximal tubular cell function. This coculture model and the data described will be important in the further elucidation of microvascular endothelial and proximal tubular epithelial cross talk mechanisms.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3