Differential expression and alternative splicing of TRP channel genes in smooth muscles

Author:

Walker Rebecca L.1,Hume Joseph R.1,Horowitz Burton1

Affiliation:

1. Department of Physiology, University of Nevada School of Medicine, Reno, Nevada 89557

Abstract

Nonselective cation channels (NSCC) are targets of excitatory agonists in smooth muscle, representing the nonselective cation current I cat. Na+ influx through NSCC causes depolarizations and activates voltage-dependent Ca2+ channels, resulting in contraction. The molecular identity of I cat in smooth muscle has not been elucidated; however, products of the transient receptor potential (TRP) genes have characteristics similar to native I cat. We have determined the levels of TRP transcriptional expression in several murine and canine gastrointestinal and vascular smooth muscles and have analyzed the alternative processing of these transcripts. Of the seven TRP gene family members, transcripts for TRP4, TRP6, and TRP7 were detected in all murine and canine smooth muscle cell preparations. TRP3 was detected only in canine renal artery smooth muscle cells. The full-length cDNAs for TRP4, TRP6, and TRP7, as well as one splice variant of TRP4 and two splice variants of TRP7, were cloned from murine colonic smooth muscle. Quantitative RT-PCR determined the relative amounts of TRP4, TRP6, and TRP7 transcripts, as well as that of the splice variants, in several murine smooth muscles. TRP4 is the most highly expressed, while TRP6 and TRP7 are expressed at a lower level in the same tissues. Splice variants for TRP7, deleted for exons encoding amino acids including transmembrane segment S1, predominated in murine smooth muscles, while the full-length form of the transcript was expressed in canine smooth muscles.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3