Affiliation:
1. Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Abstract
Parathyroid hormone secretion is exquisitely sensitive to small changes in serum Ca2+concentration, and these responses are transduced via the Ca2+-sensing receptor (CaR). We utilized heterologous expression in HEK-293 cells to determine the effects of small, physiologically relevant perturbations in extracellular Ca2+ on CaR signaling via phosphatidylinositol-phospholipase C, using changes in fura 2 fluorescence to quantify intracellular Ca2+. Chronic exposure of CaR-transfected cells to Ca2+ in the range from 0.5 to 3 mM modulated the resting intracellular Ca2+concentration and the subsequent cellular responses to acute extracellular Ca2+ perturbations but had no effect on thapsigargin-sensitive Ca2+ stores. Modest, physiologically relevant increases in extracellular Ca2+concentration (0.5 mM increments) caused sustained (30–40 min) low-frequency oscillations of intracellular Ca2+ (∼45 s peak to peak interval). Oscillations were eliminated by 1 μM thapsigargin but were insensitive to protein kinase inhibitors (staurosporine, KN-93, or bisindolylmaleimide I). Staurosporine did increase the fraction of cells oscillating at a given extracellular Ca2+ concentration. Serum Ca2+ concentrations thus chronically regulate cells expressing CaR, and small perturbations in extracellular Ca2+ alter both resting intracellular Ca2+ as well as Ca2+ dynamics.
Publisher
American Physiological Society
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献