Author:
Gorkhali Rakshya,Tian Li,Dong Bin,Bagchi Pritha,Deng Xiaonan,Pawar Shrikant,Duong Duc,Fang Ning,Seyfried Nicholas,Yang Jenny
Abstract
AbstractG-protein-coupled receptors (GPCRs) are a target for over 34% of current drugs. The calcium-sensing receptor (CaSR), a family C GPCR, regulates systemic calcium (Ca2+) homeostasis that is critical for many physiological, calciotropical, and noncalciotropical outcomes in multiple organs. However, the mechanisms by which extracellular Ca2+ (Ca2+ex) and the CaSR mediate networks of intracellular Ca2+-signaling and players involved throughout the life cycle of CaSR are largely unknown. Here we report the first CaSR protein–protein interactome with 94 novel putative and 8 previously published interactors using proteomics. Ca2+ex promotes enrichment of 66% of the identified CaSR interactors, pertaining to Ca2+ dynamics, endocytosis, degradation, trafficking, and primarily to protein processing in the endoplasmic reticulum (ER). These enhanced ER-related processes are governed by Ca2+ex-activated CaSR which directly modulates ER-Ca2+ (Ca2+ER), as monitored by a novel ER targeted Ca2+-sensor. Moreover, we validated the Ca2+ex dependent colocalizations and interactions of CaSR with ER-protein processing chaperone, 78-kDa glucose regulated protein (GRP78), and with trafficking-related protein. Live cell imaging results indicated that CaSR and vesicle-associated membrane protein-associated A (VAPA) are inter-dependent during Ca2+ex induced enhancement of near-cell membrane expression. This study significantly extends the repertoire of the CaSR interactome and reveals likely novel players and pathways of CaSR participating in Ca2+ER dynamics, agonist mediated ER-protein processing and surface expression.
Funder
Center of Diagnostics and Therapeutics Fellowship, Georgia State University
Brains and Behavior Fellowship, Georgia State University
American Heart Association
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献