Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity

Author:

Butler Peter J.12,Norwich Gerard1,Weinbaum Sheldon2,Chien Shu1

Affiliation:

1. The Whitaker Institute of Biomedical Engineering and Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0427;

2. Center for Biomedical Engineering and Department of Mechanical Engineering, City College of New York, New York, New York 10031

Abstract

Blood flow-associated shear stress may modulate cellular processes through its action on the plasma membrane. We quantified the spatial and temporal aspects of the effects of shear stress (τ) on the lipid fluidity of 1,1′-dihexadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate [DiIC16(13)]-stained plasma membranes of bovine aortic endothelial cells in a flow chamber. A confocal microscope was used to determine the DiI diffusion coefficient ( D) by fluorescence recovery after photobleaching on cells under static conditions, after a step-τ of 10 or 20 dyn/cm2, and after the cessation of τ. The method allowed the measurements of D on the upstream and downstream sides of the cell taken midway between the respective cell borders and the nucleus. In <10 s after a step-τ of 10 dyn/cm2, D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of τ. D returned to near control values within 5 s after cessation of τ. Downstream D showed little secondary changes throughout the 10-min shearing, as well as after its cessation. Further investigations into the early phase, with simultaneous measurements of upstream and downstream D, confirmed that a step-τ of 10 dyn/cm2 elicited a rapid (5-s) but transient increase in upstream D and a concurrent decrease in downstream D, yielding a significant difference between the two sites. A step-τ of 20 dyn/cm2 caused D to increase at both sites at 5 s, but by 30 s and 1 min the upstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes in membrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications in shear-induced membrane protein modulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3