Differential Ca2+signaling by thrombin and protease-activated receptor-1-activating peptide in human brain microvascular endothelial cells

Author:

Kim Yuri V.,Di Cello Francescopaolo,Hillaire Coryse S.,Kim Kwang Sik

Abstract

Thrombin and related protease-activated receptors 1, 2, 3, and 4 (PAR1–4) play a multifunctional role in many types of cells including endothelial cells. Here, using RT-PCR and immunofluorescence staining, we showed for the first time that PAR1–4 are expressed on primary human brain microvascular endothelial cells (HBMEC). Digital fluorescence microscopy and fura 2 were used to monitor intracellular Ca2+concentration ([Ca2+]i) changes in response to thrombin and PAR1-activating peptide (PAR1-AP) SFFLRN. Both thrombin and PAR1-AP induced a dose-dependent [Ca2+]irise that was inhibited by pretreatment of HBMEC with the phospholipase C inhibitor U-73122 and the sarco(endo)plasmic reticulum Ca2+-ATPase inhibitor thapsigargin. Thrombin induced transient [Ca2+]iincrease, whereas PAR1-AP exhibited sustained [Ca2+]irise. The PAR1-AP-induced sustained [Ca2+]irise was significantly reduced in the absence of extracellular calcium or in the presence of an inhibitor of store-operated calcium channels, SKF-96365. Restoration of extracellular Ca2+to the cells that were initially activated by PAR1-AP in the absence of extracellular Ca2+resulted in significant [Ca2+]irise; however, this effect was not observed after thrombin stimulation. Pretreatment of the cells with a low thrombin concentration (0.1 nM) prevented [Ca2+]irise in response to high thrombin concentration (10 nM), but pretreatment with PAR1-AP did not prevent subsequent [Ca2+]irise to high PAR1-AP concentration. Additionally, treatment with thrombin decreased transendothelial electrical resistance in HBMEC, whereas PAR1-AP was without significant effect. These findings suggest that, in contrast to thrombin, stimulation of PAR1 by untethered peptide SFFLRN results in stimulation of store-operated Ca2+influx without significantly affecting brain endothelial barrier functions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3