Identification of Thrombin Receptors in Rat Brain Capillary Endothelial Cells

Author:

Bartha Katalin,Dömötör Eszter,Lanza Francois1,Adam-Vizi Vera,Machovich Raymund

Affiliation:

1. INSERM U.311, Etablissement de Transfusion Sanguine de Strasbourg, Strasbourg Cedex, France

Abstract

Both thrombin and plasmin induce contraction of brain endothelial cells, which may increase capillary permeability thereby leading to disruption of the blood-brain barrier. Identification of thrombin receptors, as well as the influence of plasmin on their activation, in capillary endothelial cells and astrocytes are therefore essential for understanding injury-related actions of thrombin in the brain. Using the reverse transcriptase-polymerase chain reaction method, the present study shows that primary cultures of rat brain capillary endothelial (RBCE) cells and astrocytes derived from rat brain express two different thrombin receptors. The first is proteolytically activated receptor (PAR)-1, the receptor responsible for the vast majority of the thrombin's cellular activation functions; the second is PAR-3, a receptor described to be essential for normal responsiveness to thrombin in mouse platelets. In addition to these thrombin receptors, the mRNA (messenger RNA) for PAR-2, a possible trypsin receptor, was also identified. Functional significance of thrombin receptors was indicated by changes in [Ca2+]i in response to thrombin, as measured by FURA-2 fluorescence in RBCE cells. Thrombin as low as 4 nmol/L induced an abrupt increase in [Ca2+]i whereas, upon addition of active site-blocked thrombin or plasmin, [Ca2+]i remained unchanged. The [Ca2+]i signal attributable to thrombin was smaller in a low Ca2+-containing medium, indicating that an influx of Ca2+ from the extracellular medium makes a contribution to the overall [Ca2+]i rise. The amplitude of the transient [Ca2+]i signal was dependent on the concentration of thrombin, and repeated application of the enzyme caused an essentially complete and long-term desensitization of the receptor. The PAR-1 agonist peptide SFLLRN also elicited a transient increase in [Ca2+]i. After activation by SFLLRN, cells showed a diminished response to thrombin, but the response was not absent, indicating that PAR-3 might contribute to the generation of the [Ca2+]i signal. Pretreatment of RBCE cells with 100 nmol/L plasmin completely prevented [Ca2+]i rise attributable to thrombin. These data show that RBCE cells and astrocytes express at least two receptors for thrombin, PAR-1 and PAR-3, and probably both receptors are involved in thrombin-induced [Ca2+]i signals. Plasmin itself does not elevate [Ca2+]i but prevents the activation of receptors by thrombin.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3