Na+-K+ transport and volume of rat erythrocytes under dietary K+ deficiency

Author:

Duhm J.,Gobel B. O.

Abstract

Red cell Na+ and K+ content and transport were studied in Sprague-Dawley rats in the course of a dietary K+ depletion ranging 1-6 wk. Plasma K+ fell to below 2 mM, and red cell K+ decreased. Cellular Na+ rose due to an increase of the Na+ leak. Inward Rb+ and outward Na+ transport by the Na+-K+ pump (determined at 2 mM external Rb+) were accelerated by the rise in cell Na+ concentration. K+ depletion caused a cation deficit of up to 30% of total red cell Na+ plus K+ and a consecutive cell shrinkage with an increase in mean cellular hemoglobin content (MCHC). The cell shrinkage, in turn, was paralleled by up to a 10-fold increase in the maximum capacity of the furosemide-sensitive, chloride-dependent Na+-K+ cotransport system. This system participated with up to 50% of the total K+ movements across the red cell membrane in severe K+ deficiency. In normal cells shrunken by osmotic means, Na+-K+ cotransport was similarly accelerated severalfold, indicating that the cell shrinkage occurring during K+ depletion is a major factor inducing the changes in Na+-K+ cotransport. However, a second unknown factor is also involved. It is concluded that in the rat, not only genetic but also environmental parameters contribute in determining the actual activity of the red cell Na+-K+ cotransport system. The cell volume and MCHC must be considered when judging Na+ and K+ transport changes observed in rat erythrocytes under various pathophysiological conditions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3