Cardiorespiratory physiological perturbations after acute smoke-induced lung injury and during extracorporeal membrane oxygenation support in sheep

Author:

Chemonges SaulORCID

Abstract

AbstractBackgroundNumerous successful therapies developed for human medicine involve animal experimentation. Animal studies that are focused solely on translational potential, may not sufficiently document unexpected outcomes. Considerable amounts of data from such studies could be used to advance veterinary science. For example, sheep are increasingly being used as models of intensive care and therefore, data arising from such models must be published. In this study, the hypothesis is that there is little information describing cardiorespiratory physiological data from sheep models of intensive care and the author aimed to analyse such data to provide biological information that is currently not available for sheep that received extracorporeal life support (ECLS) following acute smoke-induced lung injury.MethodsNineteen mechanically ventilated adult ewes undergoing intensive care during evaluation of a form of ECLS (treatment) for acute lung injury were used to collate clinical observations. Eight sheep were injured by acute smoke inhalation prior to treatment (injured/treated), while another eight were not injured but treated (uninjured/treated). Two sheep were injured but not treated (injured/untreated), while one received room air instead of smoke as the injury and was not treated (placebo/untreated). The data were then analysed for 11 physiological categories and compared between the two treated groups.ResultsCompared with the baseline, treatment contributed to and exacerbated the deterioration of pulmonary pathology by reducing lung compliance and the arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) ratio. The oxygen extraction index changes mirrored those of the PaO2/FiO2 ratio. Decreasing coronary perfusion pressure predicted the severity of cardiopulmonary injury.ConclusionsThese novel observations could help in understanding similar pathology such as that which occurs in animal victims of smoke inhalation from house or bush fires, aspiration pneumonia secondary to tick paralysis and in the management of the severe coronavirus disease 2019 (COVID-19) in humans.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3