Abstract
AbstractBackgroundNumerous successful therapies developed for human medicine involve animal experimentation. Animal studies that are focused solely on translational potential, may not sufficiently document unexpected outcomes. Considerable amounts of data from such studies could be used to advance veterinary science. For example, sheep are increasingly being used as models of intensive care and therefore, data arising from such models must be published. In this study, the hypothesis is that there is little information describing cardiorespiratory physiological data from sheep models of intensive care and the author aimed to analyse such data to provide biological information that is currently not available for sheep that received extracorporeal life support (ECLS) following acute smoke-induced lung injury.MethodsNineteen mechanically ventilated adult ewes undergoing intensive care during evaluation of a form of ECLS (treatment) for acute lung injury were used to collate clinical observations. Eight sheep were injured by acute smoke inhalation prior to treatment (injured/treated), while another eight were not injured but treated (uninjured/treated). Two sheep were injured but not treated (injured/untreated), while one received room air instead of smoke as the injury and was not treated (placebo/untreated). The data were then analysed for 11 physiological categories and compared between the two treated groups.ResultsCompared with the baseline, treatment contributed to and exacerbated the deterioration of pulmonary pathology by reducing lung compliance and the arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) ratio. The oxygen extraction index changes mirrored those of the PaO2/FiO2 ratio. Decreasing coronary perfusion pressure predicted the severity of cardiopulmonary injury.ConclusionsThese novel observations could help in understanding similar pathology such as that which occurs in animal victims of smoke inhalation from house or bush fires, aspiration pneumonia secondary to tick paralysis and in the management of the severe coronavirus disease 2019 (COVID-19) in humans.
Publisher
Cold Spring Harbor Laboratory
Reference61 articles.
1. Optimal management of the critically ill: anaesthesia, monitoring, data capture, and point-of-care technological practices in ovine models of critical care;Biomed Res Int,2014
2. Platts, D.G. , et al. A novel echocardiographic imaging technique, intracatheter echocardiography, to guide veno-venous extracorporeal membrane oxygenation cannulae placement in a validated ovine model. Intensive Care Medicine Experimental 2, 2 (2014).
3. Feasibility of Perflutren Microsphere Contrast Transthoracic Echocardiography in the Visualization of Ventricular Endocardium during Venovenous Extracorporeal Membrane Oxygenation in a Validated Ovine Model;Echocardiography,2015
4. Development of simulated and ovine models of extracorporeal life support to improve understanding of circuit-host interactions;Crit. Care Resusc,2012
5. Inflammation and lung injury in an ovine model of extracorporeal membrane oxygenation support