The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture

Author:

Howson K. M.,Aplin A. C.,Gelati M.,Alessandri G.,Parati E. A.,Nicosia R. F.

Abstract

Pericytes play an important role in modulating angiogenesis, but the origin of these cells is poorly understood. To evaluate whether the mature vessel wall contains pericyte progenitor cells, nonendothelial mesenchymal cells isolated from the rat aorta were cultured in a serum-free medium optimized for stem cells. This method led to the isolation of anchorage-independent cells that proliferated slowly in suspension, forming spheroidal colonies. This process required basic fibroblast growth factor (bFGF) in the culture medium, because bFGF withdrawal caused the cells to attach to the culture dish and irreversibly lose their capacity to grow in suspension. Immunocytochemistry and RT-PCR analysis revealed the expression of the precursor cell markers CD34 and Tie-2 and the absence of endothelial cell markers (CD31 and endothelial nitric oxide synthase, eNOS) and smooth muscle cell markers (α-smooth muscle actin, α-SMA). In addition, spheroid-forming cells were positive for NG2, nestin, PDGF receptor (PDGFR)-α, and PDGFR-β. Upon exposure to serum, these cells lost CD34 expression, acquired α-SMA, and attached to the culture dish. Returning these cells to serum-free medium failed to restore their original spheroid phenotype, suggesting terminal differentiation. When embedded in collagen gels, spheroid-forming cells rapidly migrated in response to PDGF-BB and became dendritic. Spheroid-forming cells cocultured in collagen with angiogenic outgrowths of rat aorta or isolated endothelial cells transformed into pericytes. These results demonstrate that the rat aorta contains primitive mesenchymal cells capable of pericyte differentiation. These immature cells may represent an important source of pericytes during angiogenesis in physiological and pathological processes. They may also provide a convenient supply of mural cells for vascular bioengineering applications.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3