Lanthanum is transported by the sodium/calcium exchanger and regulates its activity

Author:

Reeves John P.1,Condrescu Madalina1

Affiliation:

1. Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103

Abstract

La3+ uptake was measured in fura 2-loaded Chinese hamster ovary cells expressing the bovine cardiac Na+/Ca2+ exchanger (NCX1.1). La3+ was taken up by the cells after an initial lag phase of 50-60 s and achieved a steady state within 5-6 min. Neonatal cardiac myocytes accumulated La3+ in a similar manner. La3+ uptake was due to the activity of the exchanger, because no uptake was seen in nontransfected cells or in transfected cells that had been treated with gramicidin to remove cytosolic Na+. The low rate of La3+ uptake during the lag period resulted from insufficient cytosolic Ca2+ to activate the exchanger at its regulatory sites, as shown by the following observations. La3+ uptake occurred without a lag period in cells expressing a mutant of NCX1.1 that does not exhibit regulatory activation by cytosolic Ca2+. The rate of La3+ uptake by wild-type cells was increased, and the lag phase was reduced or eliminated, when the cytosolic Ca2+ concentration was increased before initiating La3+ uptake. La3+ could substitute for Ca2+ at very low concentrations to activate exchange activity. Thus preloading cells expressing NCX1.1 with a small quantity of La3+ increased the rate of exchange-mediated Ca2+ influx by 20-fold; in contrast, cytosolic La3+ partially inhibited Ca2+ uptake by the regulation-deficient mutant. With an estimated KD of 30 pM for the binding of La3+ to fura 2, we conclude that cytosolic La3+ activates exchange activity at picomolar concentrations. We speculatively suggest that endogenous trace metals might activate exchange activity under physiological conditions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3