Modulation of smooth muscle phenotype in vitro by homologous cell substrate

Author:

Tao F.12,Chaudry S.1,Tolloczko B.1,Martin J. G.1,Kelly S. M.1

Affiliation:

1. Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada H2X 2P2; and

2. Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115

Abstract

We have developed a novel cell culture system that supports the shortening of smooth muscle cells. Primary rat airway smooth muscle cells were plated on an ethanol-fixed, confluent monolayer of homologous smooth muscle cells (homologous cell substrate, HCS). Cells grown on HCS exhibited morphological and functional characteristics consistent with a differentiated phenotype. Cells on HCS were spindle shaped with a well-defined long axis, whereas cells grown on glass were larger and irregularly shaped. Smooth muscle-specific α-actin immunostained diffusely in cells on HCS, whereas it appeared as stress fibers in cells on glass. Agonists recruited a greater fraction of HCS cells to contract, resulting in greater changes in cell area or length on average, but the maximal capacity of shortening of individual cells was similar between the groups. Unlike cells on glass, cells on HCS shortened to methacholine. HCS was reversible and persisted over several passages. Agonists stimulated intracellular Ca2+ oscillations in cells on HCS, whereas they elicited biphasic peak and plateau transients in cells on glass. HCS modulates smooth muscle cell phenotype in vitro.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3