Use of a three-dimensional cell culture model to study airway smooth muscle-mast cell interactions in airway remodeling

Author:

Ceresa Claudia C.,Knox Alan J.,Johnson Simon R.

Abstract

Increased airway smooth muscle (ASM) mass and infiltration by mast cells are key features of airway remodeling in asthma. We describe a model to investigate the relationship between ASM, the extracellular matrix, mast cells, and airway remodeling. ASM cells were cultured in a three-dimensional (3-D) collagen I gel (3-D culture) alone or with mast cells. Immunocytochemistry and Western blotting of ASM in 3-D cultures revealed a spindle-shaped morphology and significantly lower α-smooth muscle actin and vimentin expression than in ASM cultured in monolayers on collagen type I or plastic (2-D culture). In 3-D cultures, basal ASM proliferation, examined by Ki67 immunocytochemistry, was reduced to 33 ± 7% ( P < 0.05) of that in 2-D cultures. The presence of mast cells in cocultures increased ASM proliferation by 1.8-fold ( P < 0.05). Gelatin zymography revealed more active matrix metalloproteinase (MMP)-2 in 3-D than in 2-D culture supernatants over 7 days. Functional MMP activity was examined by gel contraction. The spontaneous gel contraction over 7 days was significantly inhibited by the MMP inhibitor ilomastat. Mast cell coculture enhanced ASM gel contraction by 22 ± 16% (not significant). Our model shows that ASM has different morphology, with lower contractile protein expression and basal proliferation in 3-D culture. Compared with standard techniques, ASM synthetic function, as shown by MMP production and activity, is sustained over longer periods. The presence of mast cells in the 3-D model enhanced ASM proliferation and MMP production. Airway remodeling in asthma may be more accurately modeled by our system than by standard culture systems.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3