Vascular biology of hydrogen sulfide

Author:

Kanagy Nancy L.1,Szabo Csaba2,Papapetropoulos Andreas34

Affiliation:

1. Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico;

2. Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas;

3. Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece; and

4. Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

Abstract

Hydrogen sulfide (H2S) is a ubiquitous signaling molecule with important functions in many mammalian organs and systems. Observations in the 1990s ascribed physiological actions to H2S in the nervous system, proposing that this gasotransmitter acts as a neuromodulator. Soon after that, the vasodilating properties of H2S were demonstrated. In the past decade, H2S was shown to exert a multitude of physiological effects in the vessel wall. H2S is produced by vascular cells and exhibits antioxidant, antiapoptotic, anti-inflammatory, and vasoactive properties. In this concise review, we have focused on the impact of H2S on vascular structure and function with an emphasis on angiogenesis, vascular tone, vascular permeability and atherosclerosis. H2S reduces arterial blood pressure, limits atheromatous plaque formation, and promotes vascularization of ischemic tissues. Although the beneficial properties of H2S are well established, mechanistic insights into the molecular pathways implicated in disease prevention and treatment remain largely unexplored. Unraveling the targets and downstream effectors of H2S in the vessel wall in the context of disease will aid in translation of preclinical observations. In addition, acute regulation of H2S production is still poorly understood and additional work delineating the pathways regulating the enzymes that produce H2S will allow pharmacological manipulation of this pathway. As the field continues to grow, we expect that H2S-related compounds will find their way into clinical trials for diseases affecting the blood vessels.

Funder

NIH

Shriners of North America

Cancer Prevention and Research Institute of Texas (CPRIT)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3